国產又粗又猛又爽又黄,最近韩国电影免费高清hd,色欲精品久久人妻av中文字幕 ,授课方式by肉馅水饺林清

文章發布
網站首頁 > 文章發布 > 臺州靠譜MPP定制

臺州靠譜MPP定制

發布時間:2021-12-16 01:23:18
臺州靠譜MPP定制

臺州靠譜MPP定制

發泡塑木復合材料是將塑料母粒、木粉、填料、發泡劑和各種助劑按一定比例混合,于成型過程中在復合材料內部引入泡孔而制成。發泡劑在塑木共混物相體系中形成的氣體相可通過溶解氣體的分離、揮發性氣體的汽化或化學反應產生氣體的釋放等途徑實現。聚丙烯微孔發泡發泡塑木復合材料內部良好的泡孔結構有助于鈍化普通WPC中的裂紋尖端,阻止裂紋擴展,因而可以克服普通塑木復合材料脆性較大、抗沖擊強度較小和材料伸長率較低的缺點。另外,由于發泡塑木復合材料中含有大量泡孔,材料內部空隙較大,制備時所用樹脂量大大削減,相對節約了原料成本,也有效降低了材料的密度(約為未發泡塑木復合材料的50%,可達0.6~1.0g/cm3),材料的隔音、隔熱和緩沖效果也隨之提高。此外,因發泡材料自重輕,便于運輸、施工和安裝,有望成為物流包裝等行業所用木材及塑料的替代品。發泡塑木復合材料還是一種環保材料,原料來源廣(回收的二次纖維和廢舊塑料均可),制造成本低廉,其本身還可多次回收再利用,減少了塑料的使用量,降低了環境污染,也有益于保護森林資源。盡管目前國內一些包裝材料制造商及研究單位在努力研發發泡型純植物纖維緩沖包裝材料,但相比較而言,FW-PC因集合了木材與塑料兩者之長,因而仍在性能上更具優勢,如強度更高、耐水性能更好、價格更低廉、應用范圍更廣。聚丙烯(PP)價格適中,力學性能優異,耐熱溫度相對較高。PP基發泡材料的發泡體系性能和發泡機理的相關研究比較深入,制備工藝已基本成熟。我國研究人員對聚丙烯基發泡塑木復合材料的研究較多,采用的木質材料包括木粉、農作物廢料和竹粉等,例如注塑法得到的發泡塑木復合材料微孔結構及其增韌改性進行研究,采用自制的塑木粒料和發泡粒料(比例9:1)在注塑成型機上進行成型,制備出具有不同微孔結構的PP/木纖維復合材料。對材料綜合性能的測定結果表明:注射溫度為180℃、保壓壓力為10 MPa時,所得發泡塑木復合材料的微孔平均孔徑為53μm,微孔密度為2.8×106個/cm3,微孔為“蜂窩”狀形貌。與未發泡的塑木復合材料相比,密度降低22%,沖擊韌性提高60%。材料中的微孔改變了裂紋擴展方向,形成“臺階”、“分叉”,從而增加了裂紋的擴展路徑,同時可使周圍基體變形時容易產生強迫高彈形變。另經研究對木纖維/PP 復合微孔發泡材料制備工藝與材料性質之間的關系進行研究,采用化學發泡法,利用注塑成型制備得到孔徑更小的木纖維/PP復合微孔發泡材料。該項研究結果表明,添加木纖維使復合材料的力學性能顯著提高,且材料的沖擊強度和彎曲強度高于未發泡材料,但后者的拉伸強度要高于木纖維/PP 復合微孔發泡材料;復合微孔發泡材料的密度隨木纖維摻量的增加而增大,但小于未發泡材料的密度,而且當木纖維摻量提高時,泡孔直徑先減后增,木纖維摻量為5% 時,泡孔直徑小,為20.5μm。有研究顯示制備發泡塑木復合材料的主要原料選定為秸稈粉和PP,通過調整偶氮二甲酰胺(AC)發泡劑與乙烯-醋酸乙烯高聚物(EEVA)的比例、偶聯劑的種類和含量擠出工藝條件參數研究發泡工藝。結果表明:AC發泡劑含量為4份時,所得發泡材料密度小為0.95g/cm3,沖擊強度大為14.88KJ/m2;當EVA含量在12%時,材料的密度達到小,為0.84g/cm3,沖擊強度達到大,為11.4KJ/m2;偶聯劑(馬來酸酐接枝聚丙烯,MAH-g-PP)為6份時,發泡材料的沖擊強度達到大,為11.56KJ/m2;制備發泡母粒時,擠出機螺桿溫度為150℃ 時,密度達到0.94g/cm3,沖擊強度達到12.04KJ/m2。以竹粉和PP為原料采用注塑法制備了發泡塑木復合材料。實驗以乙烯辛烯共聚物(POE)和馬來酸酐接枝POE(POE-g-MAH)作為復合材料的增韌劑。結果顯示:添加POE和POE-g-MAH會略微降低材料拉伸強度和彎曲強度,但可明顯提高材料的缺口沖擊強度,二者用量分別為15%和8%;采用8%POE-g-MAH增韌的復合材料的缺口沖擊強度為8.55KJ/m2,提高了35.7%,可很好地應用于汽車內飾件。環境掃描電鏡(ESEM)測定結果顯示,增韌后的復合材料斷裂形式轉變為韌性斷裂。動態頻率掃描結果顯示,POOE對復合材料流變性能的影響較小,而POE-g-MAH增韌的復合材料的儲能模量和復數黏度明顯增大。

臺州靠譜MPP定制

臺州靠譜MPP定制

摘要:采用不飽和聚酯對線型均聚聚丙烯進行熔融接枝改性。改性后的聚丙烯形成了一種微交聯結構,其中凝膠含量約為10%,且凝膠的交聯點之間平均相對分子質量達到3.0×105。這種微交聯的聚丙烯和未改性的線型聚丙烯相比,具有相近的剪切黏度和熔體流動速率,但熔體彈性明顯增加,且有應變硬化行為,其拉伸黏度是本體聚丙烯的10倍。因此,微交聯結構的引入改善了聚丙烯的發泡性能。以超臨界二氧化碳為發泡劑,在不加入成核劑的條件下,得到了泡孔密度為1.1×109cm-3的微孔泡沫塑料。普通線型聚丙烯發泡的溫度區間只有4℃。因此,普通線型聚丙烯須經過改性提高熔體強度,使氣泡核增長時泡孔結構可以維持到結晶過程的發生。通常有4種方法提高聚丙烯的熔體強度:增加聚丙烯的相對分子質量,拓寬相對分子質量分布(或者引入超高分子量尾端),引入長支鏈結構以及形成交聯結構。其中長支鏈的引入雖然改善了PP發泡性能,但是會引起線型聚丙烯成核速率降低,在制備高泡孔密度的泡沫時,必須加入納米成核劑。而Zha和Xing的研究結果顯示以超臨界二氧化碳為發泡劑利用交聯聚烯烴制備發泡材料時,在沒有使用成核劑的條件下,均得到了高泡孔密度的泡沫材料。雖然交聯結構的引入可以明顯改善聚丙烯的發泡性能,但同時也使得聚丙烯的剪切黏度大幅上升,引起加工困難,并由于三維網絡結構的存在使得發泡塑料無法回收再利用,應用上受到限制。近年來一些學者發現在聚烯烴中可以引入“微交聯”結構,在保持聚烯烴原有的剪切黏度下,提高聚烯烴的熔體彈性和拉伸黏度,并改善聚烯烴發泡性能。本文采用一種自制的不飽和聚酯對線型均聚聚丙烯進行熔融接枝改性,在聚丙烯中引入微交聯結構,并且對形成的微交聯進行了表征,同時測試了改性聚丙烯的流變行為。后利用超臨界二氧化碳在高壓釜內對改性聚丙烯的發泡性能進行了評價。聚丙烯微孔發泡實驗部分1.1 試劑與儀器線型均聚聚丙烯PP T36F:重均相對分子質量(-Mw)=292050,相對分子質量分布寬度(MWD)=4.2,熔體指數(MFI)=2.5,齊魯石化公司;不飽和聚酯(ULP):-Mn=1700~2500,自制;過氧化二異丙苯(DCP):純度99%,苯乙烯(St):純度99%:上海化學試劑廠;二氧化碳:純度99%,上海凌峰試劑廠。平板旋轉流變儀Thermo Hakke6.0和密煉機Haake Rheocord90型:Thermo Scientific公司(德國);ARES旋轉流變儀:TA Instrument 公司(美國);掃描電鏡:型-JSM-6360LV,日本電子公司(日本)。1.2 實驗過程聚丙烯的改性:不飽和聚酯的結構參見Fig.1。聚丙烯改性按以下步驟進行:稱取PP粒料100.0g、不飽和聚酯2.5g、過氧化二異丙苯0.1g和苯乙烯2.0g,混合,加入密煉機中,170℃,轉速30r/min的條件下,熔融反應6.0min。然后停止攪拌,在氮氣氣氛下170℃熱處理15min。反應過程大致如Fig.2。聚丙烯的發泡過程:將高壓釜用CO2沖洗后,放入5gPP樣品。關閉高壓釜,充入CO2使釜內壓力達到6MPa。高壓釜在油浴中升溫至170℃,維持30min以保證聚丙烯熔融和CO2溶解在聚丙烯內。緩慢調節壓力至所需要發泡壓力15MPa,保持30min后,迅速打開閥門泄壓,并將高壓釜放入冰水混合物中冷卻后取出發泡樣品。結果與討論2.1復數黏度2種PP樣品的復數黏度隨角頻率的變化見Fig.3。2條基本相重合的曲線表明引入的微交聯結構并沒有引起改性PP黏度增加。為了比較2種PP剪切黏度的變化,通過Cross方程對兩曲線進行擬合。從Tab.1中可以看到,交聯改性并沒有引起改性后聚丙烯零剪切黏度的急劇增加,且熔體指數略有下降,這主要是因為微交聯結構交聯點間的平均相對分子質量達到了3.0×105,遠高于聚丙烯的臨界纏結相對分子質量(5600)。但由于微交聯而形成的三維網絡結構,使得熔體松弛時間和熔體彈性增加,所以改性后PP的特征松弛時間卻增加為原來的7.4倍。而剪切變稀指數從0.55降為0.46,剪切變稀行為有所減弱。2.2儲能模量和損耗角根據線性粘彈性理論,在末端低頻率區域,只有長的松弛時間對熔體的低頻末端儲能模量有貢獻,所以儲能模量和末端角頻率有以下的關系:Fig.4(A)顯示,改性后PP的儲能模量為未改性PP的2倍,儲能模量曲線末端的斜率也從1.51下降到0.87,改性后PP的熔體彈性明顯增強。損耗角同樣對熔體彈性的改變很敏感。Fig.4(B)顯示,未改性PP損耗角的正切值曲線隨角頻率減小而迅速抬升,而改性后PP損耗角正切值在低頻末端區緩慢變化并趨于平緩。相同頻率下損耗角正切值越小,熔體彈性行為越明顯。Winter和Chambon的研究表明,在臨界凝膠點,損耗角正切值為一常數與角頻率無關,并符合以下比例關系:式中:n———松弛指數。Fig.4(B)中損耗角正切值與角頻率還存在一定的依賴關系,鄭強等在研究過氧化物交聯的低密度聚乙烯的體系中也發現了這種現象,并認為是由于測試的非平衡態導致了這一情況的發生。2.3 法向應力差聚合物熔體受到剪切作用時,由于法向應力差的的作用,呈現彈性行為。通過比較法向應力差,可知聚合物熔體彈性的大小。采用定剪切速率掃描法來測試改性前后PP熔體彈性行為的改變。由Fig.5可以看到,改性后PP的法相應力差明顯提高,熔體彈性增強。2.4 瞬時拉伸黏度Fig.6是在應變速率接近發泡時拉伸應變速率0.1s-1時,2種PP的瞬時拉伸黏度隨應變變化的曲線,圖中虛線是線型聚丙烯3ηo曲線。由于拉伸應變速率較大,純PP的拉伸黏度曲線在還沒有進入穩態流動區域前就已經斷裂,且沒有應變硬化現象發生。而改性PP有明顯的應變硬化行為,瞬時拉伸黏度向上抬起偏移了3η0曲線,大瞬時拉伸黏度是純PP的10倍,達到5.6×105Pa·s。交聯點之間的鏈段被拉伸是改性聚丙烯發生應變硬化行為的原因。2.5 發泡行為應變硬化行為對聚丙烯發泡性能有重要的影響。采用超臨界二氧化碳為發泡劑,在反應釜中考察了改性PP的發泡性能。工藝條件為溫度170℃、壓力15MPa。從Fig.7A中可以看到,純PP發泡后呈現大部分的未發泡區域和一些串孔的泡孔,基本沒有可見的泡孔結構。說明純PP的熔體強度不夠,無法支持發泡時氣體擴散引起的膨脹應力,在泡孔沒有進入固化和定型階段時,PP熔體氣泡壁已經破裂。Fig.7B中顯示,改性PP發泡后,可以看到細密的氣泡孔布滿整個橫截面,泡孔呈現出多邊形的結構。利用圖形分析軟件分析得到的泡孔大小和泡孔密度列在Tab.2。改性后微交聯PP的泡孔直徑在10μm右,泡孔密度達到1.1×109cm-3。微交聯使得改性PP具有應變硬化行為,不僅增加了PP的熔體強度,同時熔體在承受拉伸應力時,熔體形變變得均勻,使得熔體不容易斷裂,因此改性PP的發泡性能得到明顯改善。非常高的泡孔密度也說明發泡時有很高的成核速率,具體原因尚需更多的研究。利用不飽和聚酯對線型聚丙烯進行了熔融接枝改性,得到一種具有微交聯結構的聚丙烯。這種微交聯的聚丙烯在顯著增加聚丙烯的熔體彈性以及拉伸黏度的同時,沒有使剪切黏度劇烈增加,使得在改善發泡性能的同時,保持了聚丙烯的加工性能。改性后的PP以超臨界CO2為發泡劑發泡,在不加入任何成核劑的條件下,可以得到發泡倍率25.6倍,泡孔密度1.1×109cm-3的微孔泡沫塑料。

臺州靠譜MPP定制

臺州靠譜MPP定制

隨著新能源等行業的快速發展,發泡材料得到大規模應用,因其具有的優異機械性能和無毒(低毒)、絕熱、隔音、絕緣、緩沖、輕量化等性能,在新能源汽車領域的應用更是帶來了行業發展的新契機。隨著國民對于環保、綠色、安全、舒適要求愈加苛刻,對環境友好型的發泡技術和具備可阻燃、可(完全)降解、可導電等新型發泡材料受到追捧,成為國內外研究人員的研究熱點。聚丙烯微孔發泡由華東理工大學化工學院趙玲教授領銜的《高性能聚丙烯微孔發泡材料綠色制備過程的優化和強化》項目斬獲科技進步獎一等獎,發的聚丙烯發泡專用料打破了國外公司的壟斷,聚丙烯微孔發泡材料不斷地在新興領域成功應用,包括新能源汽車動力電池墊片等等,引領了高性能聚丙烯微孔發泡材料的綠色制造和高端應用。發泡材料具有什么優點發泡材料具有較好防震緩沖、隔音、隔熱保溫以及阻燃防爆等特性,其在汽車領域主要用于汽車車載空調用隔熱泡沫管材、汽車減震、新能源汽車電池用發泡硅膠密封墊圈等。目前大多數汽車內飾材料,如地板、頂棚、方向盤、汽車座椅等均為聚氨酯類泡沫材料,這種材料耐候性能較差,易燃且燃燒過程中釋放大量對人體有害的有毒氣體。隨著國內汽車產業節能減排發展趨勢愈加顯著,對汽車輕量化提出了更高要求。特別是在車市持續萎靡、新能源汽車競爭愈發激烈的情況下,輕量化成為汽車產業從困境中突圍的重要方向。整車廠、改性塑料企業都在加大輕量化材料領域的布局。發泡材料在新能源汽車領域的新應用新能源電動汽車的技術關鍵在于其高能量密度鋰電池的充放電技術及安全性能。鋰電池在使用過程中必須保持絕佳的防水防塵效果,而易發熱自燃是影響其安全使用的頭等難題。在暴雨、淺灘、霧霾等極端條件下,為滿足汽車行駛過程中動力電池的密封和緩沖保護的要求,特斯拉等美國車企率先將發泡硅膠這一小眾材料應用到動力電池上。例如:特斯拉model3電池PACK包為了減輕模組重量、提升安全性,大量使用有機硅發泡灌封材料來保護單個電芯,可在一定時間內有限阻止電池包上部熱量傳輸給電芯導致熱失控。由于特斯拉在動力電池組技術方便的標桿作用,大大加速硅膠發泡材料在動力電池PACK包上的應用推廣。聚丙烯微孔發泡材料技術在新能源汽車競爭愈發激烈的情況下,微孔發泡技術讓汽車駛向輕量化——在汽車非金屬部件的輕量化領域,微孔發泡材料是行業競相研究的主要課題之一。2018年,中石化就將聚丙烯微孔發泡材料應用技術開發列為重點課題。日常生活中,當人們購買兒童玩具、家具用品等塑料制品時,都會十分在意其材質是否無毒無味、綠色環保,近年來綜合性能優異、可回收的聚丙烯發泡材料已成為泡沫塑料家族中的“新寵”,日益受到熱捧,是聚合物泡沫材料中增長速度快的品種。聚丙烯作為產量大、增長量快、應用領域廣泛的五大通用熱塑性樹脂之一,其高品質發泡材料的綠色制備一直是聚合物發泡領域的熱點與難點。其中,超臨界CO2(二氧化碳)發泡聚合物技術是制備聚丙烯微孔發泡材料的關鍵核心技術。聚焦發泡材料綠色制造新技術2016年,由華東理工大學牽頭申報的國家重點研發計劃“重點基礎材料技術提升與產業化”重點專項項目——“聚合物材料的輕量化技術”獲準立項。該項目所聚焦的正是運用綠色高效發泡工藝,開展聚合物輕量化的應用基礎—共性技術—產業化示范的“一條鏈式”研發工作。據項目團隊專家介紹,聚合物發泡有物理發泡劑和化學發泡劑兩大類。化學發泡劑常常存在化學殘留、發泡過程難控制和不易獲得高發泡倍率等缺點;物理發泡劑中的氟氯烴類則對臭氧層有破壞作用,已逐漸被禁止和限制使用;一些新型氟碳氫化合物的全球變暖潛能值仍相對較高或價格昂貴,烷烴類發泡劑則易燃燒不安全。相比傳統發泡劑影響氣候、火災危險、有害殘留以及VOC排放等問題和弊端,超臨界流體,特別是超臨界CO2發泡聚合物是綠色制造技術,被工信部列入我國優先發展的產業關鍵共性技術,而且CO2進入聚合物后會引起熔點、表面張力和粘度下降、結晶行為改變等一系列變化,可以制備微孔甚至納米泡孔材料。聚丙烯是結晶聚合物,低溫固態發泡受結晶限制,很難制備高發泡倍率產品;高溫發泡聚合物熔體強度不夠無法保持完整泡孔,可操作窗口窄。因此,大規模制造具有穩定均勻泡孔形貌和外形尺寸的高發泡倍率微孔材料難度大。了攻克這一難題,近年來,團隊聯合無錫會通、中石化北化院、浙江新恒泰、鎮海煉化等單位,在合適物料體系、可控工藝過程和高效工業裝備等方面開展了超臨界CO2發泡聚丙烯的優化、強化和工程化等系列工作,形成了“適合超臨界CO2發泡的聚丙烯專用料“分步/分段發泡新工藝”“優化構建流場結構實現高效規模制備”等三大技術創新優勢:根據在低于其流動溫度的可變形區發泡既可以突破結晶的制約又能保證發泡材料微孔結構和外形尺寸的穩定成型這一發泡機制,開發了兼具較寬發泡溫度窗口和較強的CO2溶解擴散能力的聚丙烯發泡專用料,以及能有效改善泡孔結構和表觀形態的新型功能助劑/添加劑;CO2變壓飽和提高了過程效率和發泡倍率,氣泡成核和生長的分段實施大幅減小了高壓設備體積;釜壓發泡、模壓發泡等高壓設備和聚合物預成型體的結構優化設計保證了均勻的壓力場、溫度場和速度場,成功實現了低密度聚丙烯微孔發泡材料的規模制造和柔性生產。目成果利用上述創新技術,項目已成功建設了2套年產3萬立方模壓發泡裝置,實現了低密度聚丙烯微孔厚板的制造;新建了4套、優化改造了3套年產4-6萬立方的釜壓發泡裝置,生產效率提高25%,成品率提高到99%以上;發泡專用料已在鎮海煉化生產;2016-2018年新增產值3.31億,利稅1.09億。隨著應用市場快速開拓,2019年共推廣新建了13套裝置,市場占有率高和競爭力強。項目團隊獲得授權發明專利8件、實用新型專利8件;相關研究成果發表了46篇SCI/EI收錄論文,“國外同行認為我們全面系統地研究了CO2間歇發泡聚丙烯行為。”科技查新表明,模壓發泡的工程化技術達到國際領先水平,釜壓發泡的優化與強化技術具有國內外新穎性。

臺州靠譜MPP定制

臺州靠譜MPP定制

發泡材料品種眾多,大多數熱塑性塑料和熱固性塑料都能加工成發泡材料。熱塑性塑料發泡材料是指以高分子聚合物(塑料、橡膠、彈性體)為基礎而其內部具有無數氣泡的微孔材料,也可以視為以氣體為填料的復合材料。下面介紹熱塑性塑料發泡材料的四大成型工藝。一、模壓成型聚丙烯微孔發泡模壓成型屬于較早的發泡工藝類型,所以對模壓發泡并沒有規范的縮寫命名。直到近年來聚丙烯模壓發泡材料涌現出來后,被冠以“M”,定義為“MPP”。近年來涌現出MPP,幾乎是我國獨創的一種發泡PP。其制造工藝是以壓機做為發泡的關鍵設備,原理上與傳統的模壓發泡沒有本質的不同,關鍵的區別在于發泡劑不是傳統的AC化學發泡劑,而是采用超臨界CO2,因而發泡倍率可以高達20多倍,且非常環保。具體的制造方法是,先采用混煉、壓延、擠出等各類加工工藝將PP 制成不同厚度的薄板,然后將這些薄板剪裁好放置在大型壓機中的模具中,合上模具。加熱壓機的上下模板,將PP板材的溫度上升至PP的熔點附近,與此同時從不同方位向模具中注入超臨界CO2,在充分浸漬PP板材后,將PP板材的溫度降至適于發泡的溫度,迅速釋放壓機的壓力,讓PP板材充分發泡并降溫,即得到MPP發泡板材。MPP產品的制造以及制品的優點在于:在固體形態下浸漬;對PP熔體強度要求較低;發泡過程易于控制;產品泡孔精細、均勻;材料力學性能優;超臨界CO2較為環保且不會燃燒。但不足點也是比較明確的,如:浸漬速度慢;必須經歷制成薄板的預加工工藝過程;受聚丙烯結晶度的影響很大;靠壓機進行生產,不僅不連續,且效率較低,難以大規模工業化;應用領域不十分明確;在發泡PP中屬于制造成本較高的工藝。二、可發性珠粒模塑成型可發性珠粒模塑成型工藝,即在高壓釜中,在一定時間內,通過高壓將物理發泡劑在預定溫度下浸漬進入基體樹脂的細小粒料之中,然后冷卻體系溫度至室溫,即得到可發性珠粒。使用時,先在一定的發泡溫度下,利用水蒸氣或熱空氣使可發性珠粒預發泡一下,得到綠豆大小預發泡的可發性珠粒。在制備制品時,將預發泡的可發性珠粒放入模具中加熱、減壓,使預發泡的可發性塑料珠粒進一步膨脹并相融合,形成預定形狀的發泡材料,即稱為可發性珠粒模塑成型。由于都是采用物理發泡劑,因而發泡倍率較大。三、擠出發泡成型將塑料與發泡劑(物理或化學)分別加入擠出機的不同位置,高壓下在擠出機中熔融形成均勻的溶液,然后在口模處突然泄壓、發泡、冷卻,制成板材、片材甚至管材等。在擠出發泡過程中,發泡劑在高壓狀況下必須與塑料形成均勻的溶液,并在口模處瞬間泄壓、發泡、冷卻、形成發泡材料,不可能借助固相或者結晶的約束力,故而對塑料的熔體強度要求很高,特別需要熔體在拉伸過程中具有較強的應變硬化的性能,因此發泡難度較大。四、注塑發泡成型注塑發泡材料是發展相對較晚的一種發泡材料,主要因為傳統注塑工藝與發泡必備條件之間存在矛盾。當今的注塑發泡材料僅限于發泡倍率很低的制品,甚至于發泡并非是主要目的,而僅僅為了減小注塑制品的收縮率與變形,特別是在托盤,支架等大型制品的注塑中。聚賽龍公司通過配方的優化設計、精準的加工工藝、特殊的螺桿組合及配混工藝研制的可微發泡改性PA6區別于普通可微發泡改性PA材,使其在高表面要求、發泡效率及穩定性上具備優勢,使其能夠滿足大型微發泡汽車注塑件。

臺州靠譜MPP定制

臺州靠譜MPP定制

日常生活中,當人們購買兒童玩具、家具用品等塑料制品時,都會十分在意其材質是否無毒無味、綠色環保,近年來綜合性能優異、可回收的聚丙烯發泡材料已成為泡沫塑料家族中的“新寵”,日益受到熱捧,是聚合物泡沫材料中增長速度快的品種。超臨界CO2(二氧化碳)發泡聚合物技術是制備聚丙烯微孔發泡材料的關鍵核心技術。在5月19日召開的上海市科技獎勵大會上,華東理工大學化工學院趙玲教授領銜的“高性能聚丙烯微孔發泡材料綠色制備過程的優化和強化”項目斬獲科技進步獎一等獎。跳轉閱讀→化工醫藥企業HR注意啦,這里有近千位化學化工醫藥專業的海內外本碩博畢業生等你招聘~聚丙烯微孔發泡鎖定新材料發展重點領域布局綠色制造新技術輕量化材料已是我國新材料發展重點領域,發泡則是實現聚合物輕量化的直接手段。隨著航天航空、國防、能源、交通、包裝、電器、運動器械等行業的快速發展,對具有優異機械性能和絕熱、隔音、絕緣、緩沖等特性的聚合物發泡材料需求越來越迫切。聚丙烯作為產量大、增長量快、應用領域廣泛的五大通用熱塑性樹脂之一,其高品質發泡材料的綠色制備一直是聚合物發泡領域的熱點與難點。2016年,由華東理工大學牽頭申報的國家重點研發計劃“重點基礎材料技術提升與產業化”重點專項項目——“聚合物材料的輕量化技術”獲準立項。該項目所聚焦的正是運用綠色高效發泡工藝,開展聚合物輕量化的應用基礎—共性技術—產業化示范的“一條鏈式”研發工作。據趙玲介紹,聚合物發泡有物理發泡劑和化學發泡劑兩大類。化學發泡劑常常存在化學殘留、發泡過程難控制和不易獲得高發泡倍率等缺點;物理發泡劑中的氟氯烴類則對臭氧層有破壞作用,已逐漸被禁止和限制使用;一些新型氟碳氫化合物的全球變暖潛能值仍相對較高或價格昂貴,烷烴類發泡劑則易燃燒不安全。相比傳統發泡劑影響氣候、火災危險、有害殘留以及VOC排放等問題和弊端,超臨界流體,特別是超臨界CO2發泡聚合物是綠色制造技術,被工信部列入我國優先發展的產業關鍵共性技術,而且CO2進入聚合物后會引起熔點、表面張力和粘度下降、結晶行為改變等一系列變化,可以制備微孔甚至納米泡孔材料。聚丙烯是結晶聚合物,低溫固態發泡受結晶限制,很難制備高發泡倍率產品;高溫發泡聚合物熔體強度不夠無法保持完整泡孔,可操作窗口窄。因此,大規模制造具有穩定均勻泡孔形貌和外形尺寸的高發泡倍率微孔材料難度大。為了攻克這一難題,近年來,華理趙玲團隊聯合無錫會通、中石化北化院、浙江新恒泰、鎮海煉化等單位,在合適物料體系、可控工藝過程和高效工業裝備等方面開展了超臨界CO2發泡聚丙烯的優化、強化和工程化等系列工作,形成了“適合超臨界CO2發泡的聚丙烯專用料”“分步/分段發泡新工藝”“優化構建流場結構實現高效規模制備”等三大技術創新優勢:根據在低于其流動溫度的可變形區發泡既可以突破結晶的制約又能保證發泡材料微孔結構和外形尺寸的穩定成型這一發泡機制,開發了兼具較寬發泡溫度窗口和較強的CO2溶解擴散能力的聚丙烯發泡專用料,以及能有效改善泡孔結構和表觀形態的新型功能助劑/添加劑;CO2變壓飽和提高了過程效率和發泡倍率,氣泡成核和生長的分段實施大幅減小了高壓設備體積;釜壓發泡、模壓發泡等高壓設備和聚合物預成型體的結構優化設計保證了均勻的壓力場、溫度場和速度場,成功實現了低密度聚丙烯微孔發泡材料的規模制造和柔性生產。

主站蜘蛛池模板: 香港| 泌阳县| 陕西省| 大庆市| 吴桥县| 霞浦县| 江都市| 乌苏市| 英德市| 本溪市| 东乡族自治县| 尼勒克县| 商城县| 乌苏市| 深州市| 京山县| 焉耆| 铅山县| 拜城县| 靖江市| 寿光市| 隆德县| 杭锦后旗| 乐业县| 武邑县| 汉川市| 富顺县| 宜兰县| 双鸭山市| 广宁县| 德令哈市| 天津市| 含山县| 平顶山市| 南城县| 万州区| 稻城县| 聂拉木县| 英吉沙县| 习水县| 赫章县|