江西可降解包裝材料價格
發布時間:2024-12-20 00:53:32
江西可降解包裝材料價格
簡述聚丙烯微孔發泡新材料(Microcellular Polypropylene foam), 簡稱MPP,是特指泡孔尺寸小于100微米的聚丙烯多孔發泡材料(更嚴格地定義是泡孔尺寸小于10微米,泡孔密度大于10的9次方個/cm3)。由于材料內部大量微米級泡孔的存在,MPP具有優異的減震、緩沖、隔熱和吸聲等性能,可廣泛應用于包裝、交通工具、箱包、體育器材等領域,是傳統EVA、PU、PS發泡材料、EPE和EPP的替代物。聚丙烯微孔發泡性能與應用應用超臨界二氧化碳技術(supercritical carbon dioxide) 制備MPP,在高溫高壓下將二氧化碳氣體導入聚丙烯材料基體,并誘導其成核、發泡,形成含有大量微米尺度泡孔的微孔發泡材料。發泡過程清潔無污染,發泡制品衛生環保。發泡過程PP材料未發生交聯,因此可回收循環使用。丙烯(PP)本身是無毒材料,是目前嬰兒奶瓶和可微波加熱餐盒的常用材料。清潔衛生的MPP特別適合于醫療器械、食品等包裝材料衛生等級要求較高的領域。也可應用于兒童拼圖、玩具等對產品健康要求較高的領域,代替常用的由AC發泡劑制造的交聯PE泡沫,EVA泡沫。PP是半結晶聚合物,其熔點一般150~170℃。相比于耐溫只有70~80℃的PE、PS、PU發泡材料,MPP的使用溫度可達120℃,因此MPP特別適合高溫包裝、高溫保溫等領域。MPP集增強、隔熱和降噪為一體,也特別適用于對材料輕量化要求較高的領域,如汽車、軌道交通,船舶,風機葉片等。輕質高強的MPP厚板作為結構泡沫使用,代替傳統的結構泡沫如PVC/PU互穿結構泡沫、PET結構泡沫等,特別是作為三明治夾芯復合材料的芯材使用。MPP微米尺度的泡孔賦予材料的特別之處有:(1) 同等發泡倍率(或表觀密度)下,由于泡孔較小,微孔發泡材料的機械性能損失較小。這意味著使用MPP可以更加節約材料,更加降低制品重量和體積。2) 由于泡孔尺寸在1-100μm之間可控,MPP可以被剖切成厚度小于0.1mm的超薄片材,而片材表面不會穿孔,可應用于微電子器件的包裝。(3) 由于表面大量微米級泡孔的存在,MPP適合作為液晶顯示器背光模組的反射板,提高漫反射率。(4) 微米尺度的泡孔有效降低了泡孔內氣體的對流,從而有效降低了由空氣對流引起的熱傳遞。因此高倍率的微孔發泡材料具有較低的、依賴于泡孔結構的長期穩定的低導熱系數。(5) 輕質高強的MPP片材適合于作為揚聲器振膜使用。(6) 同樣由于其微米尺度的泡孔,MPP具有極佳的表面保護性能,可應用于液晶面板等防護性要求較高的包裝領域。

江西可降解包裝材料價格
POE是乙烯和辛烯的共聚物,其中共聚單體辛烯(C8H16)的含量為20%-30%。分子結構中辛烯的存在破壞了乙烯的結晶,但是同時也賦予共聚物優良的透明性和良好的彈性。在常溫下乙烯的結晶作為物理交聯點,在高溫下乙烯解結晶使共聚物具有塑性。窄的分子量分布使POE具有較高的拉伸強度和抗沖擊性等。由于辛烯的支化作用,使得共聚物的熱敏性大大提高,大大增強了聚合物的可加工性。與EPDM和EPR相比,α-烯烴在共聚單體中的比重較小,大大減少了分子骨架上的叔氫原子,這使得POE的耐熱氧老化性能大大提高。POE具有優異的性能 (特別是高耐熱氧老化性),價格相對便宜,因此是一種應用前景廣闊的新型彈性體材料。但是POE熱塑性彈性體材料在實際應用中存在的最大問題就是熱變形溫度較低(熱變形溫度<80℃),這大大限制了該材料的應用領域。熱塑性彈性體POE在高溫下,乙烯結晶相的消失,可能會導致某些性能(模量、耐溶劑性)等發生突變。使用交聯、填充增強等方法可以大幅度提高該材料的使用溫度并改善其它性能。適當的硫化體系和補強體系能有效的提高POE硫化膠的性能,而且通過橡塑共混改性的方法,也可以獲得一種新型POE復合材料,可期望用其代替某些如EPDM等橡膠改性PP,應用于長期處在高負荷、高應變、高溫等苛刻工作環境的橡膠制品中。茂金屬聚烯烴彈性體(Metallocene catalyzed polyolefin elastomer)是杜邦-陶氏(DuPont Dow)彈性體公司采用限定幾何構型催化技術(CGCT) 和INSITE 工藝制成的新型聚烯烴彈性體材料。限定幾何構型催化技術是當今世界上最先進的茂金屬技術之一,它能極其嚴格的控制材料的分子結構,制得加工性能和使用性能優良的所需材料。茂金屬催化劑催化效率高、工藝適應性強和制得產品性能優異,因此很快進入了工業化階段。Engage POE具有相對分子量分布窄、聚合物結構可控、聚合物分子可剪裁等一系列特點,其產品具有優異的物理機械性能和加工性能,具有其它高聚物無法比擬的優點。近來,新型聚烯烴彈性體Engage POE越來越受到科研工作者和生產企業的廣泛關注。采用溶液法聚合工藝生產的茂金屬聚乙烯彈性體是在茂金屬催化體系作用下由乙烯和α-烯烴的共聚物,α-烯烴一般為1-己烯和1-辛烯。DOW Chemical公司按照共聚單體含量將POE進行分類,辛烯在共聚單體中含量<20%,密度為0.895g/cm3~0.915g/cm3的彈性體稱為聚烯烴塑性體(POP);辛烯在共聚單體中含量>20%,在20%-30%之間,密度為0.865~0.895g/cm3,稱為聚烯烴彈性體(POE)商品名為Engage。Exxon化學公司的彈性體一般特指乙丙橡膠。在聚合過程POE分子鏈中的樹脂相(聚乙烯鏈)結晶區起到了物理交聯點的作用,一定量辛烯的引入削弱了聚乙烯鏈結晶區,形成了橡膠相從而成為具有橡膠彈性的無定型區,使得POE成為一種性能優異的熱塑性彈性體[9]。微觀結構決定聚合物的宏觀性能,與傳統聚合方法制備的聚合物相比,聚烯烴彈性體POE具有很窄的分子量分布和短支鏈結構,因而具有高彈性、高強度、高伸長率等優異的物理機械性能和的優異的耐低溫性能。窄的分子量分布使材料在注射和擠出加工過程中不宜產生撓曲,因而POE材料的加工性能優異。又由于POE大分子鏈的飽和結構,分子結構中所含叔碳原子相對較少,因而具有優異的耐熱老化和抗紫外線性能。另外,CGCT技術的應用還能夠有效控制在聚合物線形短支鏈支化結構中引入長支鏈,使材料的透明度提高,同時有效的改善了聚合物的加工流變性能。

江西可降解包裝材料價格
隨著新能源等行業的快速發展,發泡材料得到大規模應用,因其具有的優異機械性能和無毒(低毒)、絕熱、隔音、絕緣、緩沖、輕量化等性能,在新能源汽車領域的應用更是帶來了行業發展的新契機。隨著國民對于環保、綠色、安全、舒適要求愈加苛刻,對環境友好型的發泡技術和具備可阻燃、可(完全)降解、可導電等新型發泡材料受到追捧,成為國內外研究人員的研究熱點。聚丙烯微孔發泡由華東理工大學化工學院趙玲教授領銜的《高性能聚丙烯微孔發泡材料綠色制備過程的優化和強化》項目斬獲科技進步獎一等獎,發的聚丙烯發泡專用料打破了國外公司的壟斷,聚丙烯微孔發泡材料不斷地在新興領域成功應用,包括新能源汽車動力電池墊片等等,引領了高性能聚丙烯微孔發泡材料的綠色制造和高端應用。發泡材料具有什么優點發泡材料具有較好防震緩沖、隔音、隔熱保溫以及阻燃防爆等特性,其在汽車領域主要用于汽車車載空調用隔熱泡沫管材、汽車減震、新能源汽車電池用發泡硅膠密封墊圈等。目前大多數汽車內飾材料,如地板、頂棚、方向盤、汽車座椅等均為聚氨酯類泡沫材料,這種材料耐候性能較差,易燃且燃燒過程中釋放大量對人體有害的有毒氣體。隨著國內汽車產業節能減排發展趨勢愈加顯著,對汽車輕量化提出了更高要求。特別是在車市持續萎靡、新能源汽車競爭愈發激烈的情況下,輕量化成為汽車產業從困境中突圍的重要方向。整車廠、改性塑料企業都在加大輕量化材料領域的布局。發泡材料在新能源汽車領域的新應用新能源電動汽車的技術關鍵在于其高能量密度鋰電池的充放電技術及安全性能。鋰電池在使用過程中必須保持絕佳的防水防塵效果,而易發熱自燃是影響其安全使用的頭等難題。在暴雨、淺灘、霧霾等極端條件下,為滿足汽車行駛過程中動力電池的密封和緩沖保護的要求,特斯拉等美國車企率先將發泡硅膠這一小眾材料應用到動力電池上。例如:特斯拉model3電池PACK包為了減輕模組重量、提升安全性,大量使用有機硅發泡灌封材料來保護單個電芯,可在一定時間內有限阻止電池包上部熱量傳輸給電芯導致熱失控。由于特斯拉在動力電池組技術方便的標桿作用,大大加速硅膠發泡材料在動力電池PACK包上的應用推廣。聚丙烯微孔發泡材料技術在新能源汽車競爭愈發激烈的情況下,微孔發泡技術讓汽車駛向輕量化——在汽車非金屬部件的輕量化領域,微孔發泡材料是行業競相研究的主要課題之一。2018年,中石化就將聚丙烯微孔發泡材料應用技術開發列為重點課題。日常生活中,當人們購買兒童玩具、家具用品等塑料制品時,都會十分在意其材質是否無毒無味、綠色環保,近年來綜合性能優異、可回收的聚丙烯發泡材料已成為泡沫塑料家族中的“新寵”,日益受到熱捧,是聚合物泡沫材料中增長速度快的品種。聚丙烯作為產量大、增長量快、應用領域廣泛的五大通用熱塑性樹脂之一,其高品質發泡材料的綠色制備一直是聚合物發泡領域的熱點與難點。其中,超臨界CO2(二氧化碳)發泡聚合物技術是制備聚丙烯微孔發泡材料的關鍵核心技術。聚焦發泡材料綠色制造新技術2016年,由華東理工大學牽頭申報的國家重點研發計劃“重點基礎材料技術提升與產業化”重點專項項目——“聚合物材料的輕量化技術”獲準立項。該項目所聚焦的正是運用綠色高效發泡工藝,開展聚合物輕量化的應用基礎—共性技術—產業化示范的“一條鏈式”研發工作。據項目團隊專家介紹,聚合物發泡有物理發泡劑和化學發泡劑兩大類。化學發泡劑常常存在化學殘留、發泡過程難控制和不易獲得高發泡倍率等缺點;物理發泡劑中的氟氯烴類則對臭氧層有破壞作用,已逐漸被禁止和限制使用;一些新型氟碳氫化合物的全球變暖潛能值仍相對較高或價格昂貴,烷烴類發泡劑則易燃燒不安全。相比傳統發泡劑影響氣候、火災危險、有害殘留以及VOC排放等問題和弊端,超臨界流體,特別是超臨界CO2發泡聚合物是綠色制造技術,被工信部列入我國優先發展的產業關鍵共性技術,而且CO2進入聚合物后會引起熔點、表面張力和粘度下降、結晶行為改變等一系列變化,可以制備微孔甚至納米泡孔材料。聚丙烯是結晶聚合物,低溫固態發泡受結晶限制,很難制備高發泡倍率產品;高溫發泡聚合物熔體強度不夠無法保持完整泡孔,可操作窗口窄。因此,大規模制造具有穩定均勻泡孔形貌和外形尺寸的高發泡倍率微孔材料難度大。了攻克這一難題,近年來,團隊聯合無錫會通、中石化北化院、浙江新恒泰、鎮海煉化等單位,在合適物料體系、可控工藝過程和高效工業裝備等方面開展了超臨界CO2發泡聚丙烯的優化、強化和工程化等系列工作,形成了“適合超臨界CO2發泡的聚丙烯專用料“分步/分段發泡新工藝”“優化構建流場結構實現高效規模制備”等三大技術創新優勢:根據在低于其流動溫度的可變形區發泡既可以突破結晶的制約又能保證發泡材料微孔結構和外形尺寸的穩定成型這一發泡機制,開發了兼具較寬發泡溫度窗口和較強的CO2溶解擴散能力的聚丙烯發泡專用料,以及能有效改善泡孔結構和表觀形態的新型功能助劑/添加劑;CO2變壓飽和提高了過程效率和發泡倍率,氣泡成核和生長的分段實施大幅減小了高壓設備體積;釜壓發泡、模壓發泡等高壓設備和聚合物預成型體的結構優化設計保證了均勻的壓力場、溫度場和速度場,成功實現了低密度聚丙烯微孔發泡材料的規模制造和柔性生產。目成果利用上述創新技術,項目已成功建設了2套年產3萬立方模壓發泡裝置,實現了低密度聚丙烯微孔厚板的制造;新建了4套、優化改造了3套年產4-6萬立方的釜壓發泡裝置,生產效率提高25%,成品率提高到99%以上;發泡專用料已在鎮海煉化生產;2016-2018年新增產值3.31億,利稅1.09億。隨著應用市場快速開拓,2019年共推廣新建了13套裝置,市場占有率高和競爭力強。項目團隊獲得授權發明專利8件、實用新型專利8件;相關研究成果發表了46篇SCI/EI收錄論文,“國外同行認為我們全面系統地研究了CO2間歇發泡聚丙烯行為。”科技查新表明,模壓發泡的工程化技術達到國際領先水平,釜壓發泡的優化與強化技術具有國內外新穎性。

江西可降解包裝材料價格
當熱塑性聚氨酯聚合物在1950年代問世時,TPE成為商業現實。在1960年代,苯乙烯嵌段共聚物問世,在1970年代,各種TPE出現。TPE的全球使用量(1990年為680000噸/年)以每年約9%的速度增長。由于聚苯乙烯和聚丁二烯之間的不相容性,苯乙烯-丁二烯材料具有兩相微觀結構塊,前者根據確切的成分分成球體或棒。由于聚苯乙烯含量低,該材料具有彈性,聚丁二烯的特性占主導地位。通常,它們提供比傳統交聯橡膠更廣泛的性能,因為其成分可以變化以適應最終的構造目標。嵌段共聚物很有趣,因為它們可以“微相分離”以形成周期性納米結構,苯乙烯-丁二烯-苯乙烯(SBS)嵌段共聚物。這種聚合物被稱為Kraton,用于鞋底和粘合劑。由于微細結構,需要透射電子顯微鏡(TEM)來檢查結構。丁二烯基質用四氧化鋨染色以在圖像中提供對比度。該材料是通過活性聚合制成的,因此塊體幾乎是單分散的,因此有助于形成非常規則的微觀結構。由于大多數聚合物彼此不相容,形成嵌段聚合物通常會導致相分離,并且自從引入SBS嵌段聚合物以來,該原理已被廣泛采用,特別是在其中一種嵌段是高度結晶的情況下。不相容規則的一個例外是Noryl材料,其中聚苯乙烯和聚苯醚或PPO相互形成連續共混物。其他TPE具有結晶域,其中一種嵌段與相鄰鏈中的其他嵌段共結晶,例如在共聚酯橡膠中,實現與SBS嵌段聚合物相同的效果。取決于嵌段長度,由于較高的晶體熔點,域通常比后者更穩定。該點決定了材料成型所需的加工溫度,以及產品的最終使用溫度。這樣的材料包括Hytrel,一種聚酯-聚醚共聚物和Pebax,一種尼龍或聚酰胺-聚醚共聚物。熱塑性彈性體(TPE),有時也稱為熱塑性橡膠,是一類共聚物或聚合物(通常是塑料和橡膠)的物理混合物,由具有熱塑性和彈性體特性的材料組成。雖然大多數彈性體是熱固性塑料,但相比之下,熱塑性塑料在制造中相對容易使用,例如通過注塑成型。熱塑性彈性體顯示出橡膠材料和塑料材料的典型優勢。使用熱塑性彈性體的好處是能夠拉伸到適度的伸長率并恢復到接近原始形狀的能力,從而比其他材料具有更長的使用壽命和更好的物理范圍。熱固性彈性體和熱塑性彈性體之間的主要區別在于其結構中的交聯鍵類型。事實上,交聯是賦予高彈性性能的關鍵結構因素。類型商業TPE有六類通用類別(名稱符合ISO18064):苯乙烯嵌段共聚物,TPS(TPE-s);熱塑性聚烯烴彈性體;熱塑性硫化橡膠,TPV(TPE-v或TPV);熱塑性聚氨酯,TPU(TPU);熱塑性共聚酯,TPC(TPE-E);熱塑性聚酰胺,TPA(TPE-A);未分類的熱塑性彈性體,TPZ。來自嵌段共聚物組的TPE材料的例子包括CAWITON、THERMOLASTK、THERMOLASTM、Arnitel、Hytrel、Dryflex、Mediprene、Kraton、Pibiflex、Sofprene和Laprene。這些苯乙烯嵌段共聚物(TPE-s)中有CAWITON、THERMOLASTK、THERMOLASTM、Sofprene、Dryflex和Laprene。Laripur、Desmopan或Elastollan是熱塑性聚氨酯(TPU)的例子。Sarlink、Santoprene、Termoton、Solprene、THERMOLASTV、Vegaprene、或Forprene是TPV材料的例子。熱塑性烯烴彈性體(TPO)化合物的例子是For-TecE或Engage。Ninjaflex用于3D打印。為了符合熱塑性彈性體的資格,材料必須具有以下三個基本特征:1.拉伸到適度伸長的能力。2.并在消除應力后恢復到接近其原始形狀的狀態.3.可在高溫下作為熔體加工,沒有明顯的蠕變。TPE用于傳統彈性體無法提供產品所需物理性能范圍的地方。這些材料在汽車領域和家用電器領域有大量應用。2014年,TPE的全球市場規模達到約167億美元。大約40%的TPE產品用于汽車制造。例如,共聚酯TPE用于雪地摩托軌道,其中剛度和耐磨性非常重要。熱塑性烯烴(TPO)越來越多地用作屋頂材料。TPE也廣泛用于導管尼龍嵌段共聚物為患者提供了一系列理想的柔軟度。熱塑性有機硅和烯烴混合物用于擠出玻璃滑道和動態擋風雨條汽車型材。苯乙烯嵌段共聚物因其易于加工而用于鞋底,并廣泛用作粘合劑。 由于在對各種熱塑性基材進行雙組分注塑成型方面具有無與倫比的能力,工程TPS材料還涵蓋了從汽車市場到消費品和醫療產品的廣泛技術應用。例如,柔軟的抓握表面、設計元素、背光開關和表面,以及密封件、墊圈或阻尼元件。TPE通常用于制造汽車性能應用的懸架襯套,因為與常規橡膠襯套相比,它具有更大的抗變形能力。由于改性塑料樹脂的功能、成本效益和適應性,熱塑性塑料在供暖、通風和空調(HVAC)行業經歷了增長成各種蓋子、風扇和外殼。TPE還可用于醫療設備、電纜護套和內絕緣、性玩具和一些耳機電纜。 不僅用于工業用途,還用于運動鞋和背包等消費品。您可以在許多運動和戶外品牌產品中看到基于TPE的材料“ARIAPRENE”。2021年,全新的TPE回收理念問世,稱為APTERRA,它是GRS(全球回收標準)收集和再生泡沫織物廠廢料,因為每次生產運行總是有20%的廢料。

江西可降解包裝材料價格
新材料是現代科技發展之本,可降解塑料是新興的塑料新材料。隨著全球對改善環境的訴求越來越強烈,使用生物降解塑料被認為是根治一次性塑料“白色污染”最有效的解決方案。著眼于中國的雙碳戰略目標,生物基生物降解塑料全生命周期排放的溫室氣體總量較低。在此背景下,本報告深入研究可降解塑料行業現狀。從性能上看,PLA、PBAT、PHA等生物降解塑料性能接近普通塑料,為替代不可降解塑料創造了條件;從技術上看,PLA生產的中間原料丙交酯技術難以完全突破,限制產能釋放,而PBAT國內生產工藝不受限于國外,產能快速擴張;從應用上看,可降解塑料主要應用在餐飲、醫療和農業等領域。根據艾瑞測算,至2025年,外賣包裝、農膜和醫療領域將會釋放可降解塑料需求494.8億元、72.7億元和0.172億元。長遠來看,可降解塑料產業發展面臨不確定性:一,可降解塑料的成本高于傳統塑料,靠政策驅動的市場可持續性存在風險,產品的推廣最終取決于產業降本提效的空間;二,國內掌握生物降解塑料技術的企業不多,而且在關鍵環節與國外企業相比仍有較大差異,若后續技術無法突破,存在產能無法按時釋放的風險;三,多數可降解塑料的降解基于工業堆肥集中處理或特定的溫度、濕度、菌類等條件,而實際在使用后,能否有效地收集可降解塑料并滿足降解的環境條件還有待驗證。

江西可降解包裝材料價格
由于光降解材料的局限,以及廣泛的生物來源,目前的研究熱點更多地放在生物降解材料上,相對于光降解材料,生物降解材料的原料來源更加綠色,降解的產物對環境的污染性也更加小。生物可降解材料是一類在酶或微生物的作用下,使維持自身結構的分子鏈逐漸斷裂,形成對環境無害的小分子化合物的材料。 生物降解的方式有生物的物理、化學作用和酶的直接作用。根據來源的不同可以分為微生物降解型的生物材料、合成高分子型的生物降解材料、天然高分子型的生物降解材料。微生物降解材料是以有機物為碳源,微生物進行發酵轉化為高分子聚酯,利用這種高分子聚酯制作為塑料的材料。合成高分子型的生物降解材料是利用化學方法合成在自然界中與原本存在的利于降解的高分子化合物。天然高分子型的生物降解材料是在合成時以淀粉、纖維素、木質素等多糖化合物為原料,在必要的條件下加入生物降解添加劑或經氧化、改性而加工制成的塑料。其中,淀粉基構成的可降解材料和PLA構成的可降解材料是當今研究的熱點,PHB作為可降解材料也有較為廣泛的應用。 淀粉通過植物光合作用而形成的,易得,降解后仍以二氧化碳和水的形式回歸到生態環境中,是完全無污染的非常優良的生物降解材料。針對淀粉作為原料來源的淀粉基塑料是目前可降解材料領域研究的—大熱點。 PLA(聚乳酸)是多糖經過降解發酵制得、純化、聚合而成的環境友好型樹脂。PLA是由乳酸分子在一定條件下脫水縮合而成。PLA在土壤掩埋條件下,在溫度、氧氣、弱堿性的共同作用下,6~12個月降解為乳酸,最終經微生物代謝,形成二氧化碳和水。PLA因其優良的生物相容性和機械強度,被廣泛應用于新興功能型醫用高分子材料如醫用手術縫合線、骨科用固定材料等。 PHB(聚β-羥基丁酸酯)是細菌體內碳源和能源的以顆粒狀儲存的酯類積累物。PHB對氣體有阻擋性,能用于未添加抗氧化劑的食品的包裝袋;PHB有良好的生物相容性,可用于手術縫合線、骨折固定材料;因PHB能夠降解,可用于與農藥或貴重藥品的包埋處理。因為PHB用細菌發酵法進行生產,所以PHB的生產重點放在基因工程等技術。針對其易結晶、較脆、降解速度較慢的缺點,如何通過物理或化學的方法改善PHB的性能成為研究的重點對象。