無錫TPEE材料廠家
發布時間:2024-10-18 00:58:38
無錫TPEE材料廠家
當熱塑性聚氨酯聚合物在1950年代問世時,TPE成為商業現實。在1960年代,苯乙烯嵌段共聚物問世,在1970年代,各種TPE出現。TPE的全球使用量(1990年為680000噸/年)以每年約9%的速度增長。由于聚苯乙烯和聚丁二烯之間的不相容性,苯乙烯-丁二烯材料具有兩相微觀結構塊,前者根據確切的成分分成球體或棒。由于聚苯乙烯含量低,該材料具有彈性,聚丁二烯的特性占主導地位。通常,它們提供比傳統交聯橡膠更廣泛的性能,因為其成分可以變化以適應最終的構造目標。嵌段共聚物很有趣,因為它們可以“微相分離”以形成周期性納米結構,苯乙烯-丁二烯-苯乙烯(SBS)嵌段共聚物。這種聚合物被稱為Kraton,用于鞋底和粘合劑。由于微細結構,需要透射電子顯微鏡(TEM)來檢查結構。丁二烯基質用四氧化鋨染色以在圖像中提供對比度。該材料是通過活性聚合制成的,因此塊體幾乎是單分散的,因此有助于形成非常規則的微觀結構。由于大多數聚合物彼此不相容,形成嵌段聚合物通常會導致相分離,并且自從引入SBS嵌段聚合物以來,該原理已被廣泛采用,特別是在其中一種嵌段是高度結晶的情況下。不相容規則的一個例外是Noryl材料,其中聚苯乙烯和聚苯醚或PPO相互形成連續共混物。其他TPE具有結晶域,其中一種嵌段與相鄰鏈中的其他嵌段共結晶,例如在共聚酯橡膠中,實現與SBS嵌段聚合物相同的效果。取決于嵌段長度,由于較高的晶體熔點,域通常比后者更穩定。該點決定了材料成型所需的加工溫度,以及產品的最終使用溫度。這樣的材料包括Hytrel,一種聚酯-聚醚共聚物和Pebax,一種尼龍或聚酰胺-聚醚共聚物。熱塑性彈性體(TPE),有時也稱為熱塑性橡膠,是一類共聚物或聚合物(通常是塑料和橡膠)的物理混合物,由具有熱塑性和彈性體特性的材料組成。雖然大多數彈性體是熱固性塑料,但相比之下,熱塑性塑料在制造中相對容易使用,例如通過注塑成型。熱塑性彈性體顯示出橡膠材料和塑料材料的典型優勢。使用熱塑性彈性體的好處是能夠拉伸到適度的伸長率并恢復到接近原始形狀的能力,從而比其他材料具有更長的使用壽命和更好的物理范圍。熱固性彈性體和熱塑性彈性體之間的主要區別在于其結構中的交聯鍵類型。事實上,交聯是賦予高彈性性能的關鍵結構因素。類型商業TPE有六類通用類別(名稱符合ISO18064):苯乙烯嵌段共聚物,TPS(TPE-s);熱塑性聚烯烴彈性體;熱塑性硫化橡膠,TPV(TPE-v或TPV);熱塑性聚氨酯,TPU(TPU);熱塑性共聚酯,TPC(TPE-E);熱塑性聚酰胺,TPA(TPE-A);未分類的熱塑性彈性體,TPZ。來自嵌段共聚物組的TPE材料的例子包括CAWITON、THERMOLASTK、THERMOLASTM、Arnitel、Hytrel、Dryflex、Mediprene、Kraton、Pibiflex、Sofprene和Laprene。這些苯乙烯嵌段共聚物(TPE-s)中有CAWITON、THERMOLASTK、THERMOLASTM、Sofprene、Dryflex和Laprene。Laripur、Desmopan或Elastollan是熱塑性聚氨酯(TPU)的例子。Sarlink、Santoprene、Termoton、Solprene、THERMOLASTV、Vegaprene、或Forprene是TPV材料的例子。熱塑性烯烴彈性體(TPO)化合物的例子是For-TecE或Engage。Ninjaflex用于3D打印。為了符合熱塑性彈性體的資格,材料必須具有以下三個基本特征:1.拉伸到適度伸長的能力。2.并在消除應力后恢復到接近其原始形狀的狀態.3.可在高溫下作為熔體加工,沒有明顯的蠕變。TPE用于傳統彈性體無法提供產品所需物理性能范圍的地方。這些材料在汽車領域和家用電器領域有大量應用。2014年,TPE的全球市場規模達到約167億美元。大約40%的TPE產品用于汽車制造。例如,共聚酯TPE用于雪地摩托軌道,其中剛度和耐磨性非常重要。熱塑性烯烴(TPO)越來越多地用作屋頂材料。TPE也廣泛用于導管尼龍嵌段共聚物為患者提供了一系列理想的柔軟度。熱塑性有機硅和烯烴混合物用于擠出玻璃滑道和動態擋風雨條汽車型材。苯乙烯嵌段共聚物因其易于加工而用于鞋底,并廣泛用作粘合劑。 由于在對各種熱塑性基材進行雙組分注塑成型方面具有無與倫比的能力,工程TPS材料還涵蓋了從汽車市場到消費品和醫療產品的廣泛技術應用。例如,柔軟的抓握表面、設計元素、背光開關和表面,以及密封件、墊圈或阻尼元件。TPE通常用于制造汽車性能應用的懸架襯套,因為與常規橡膠襯套相比,它具有更大的抗變形能力。由于改性塑料樹脂的功能、成本效益和適應性,熱塑性塑料在供暖、通風和空調(HVAC)行業經歷了增長成各種蓋子、風扇和外殼。TPE還可用于醫療設備、電纜護套和內絕緣、性玩具和一些耳機電纜。 不僅用于工業用途,還用于運動鞋和背包等消費品。您可以在許多運動和戶外品牌產品中看到基于TPE的材料“ARIAPRENE”。2021年,全新的TPE回收理念問世,稱為APTERRA,它是GRS(全球回收標準)收集和再生泡沫織物廠廢料,因為每次生產運行總是有20%的廢料。

無錫TPEE材料廠家
央廣網上海9月17日消息(記者唐奇云 通訊員張婷)日常生活中,當人們購買兒童玩具、家具用品等塑料制品時,都會十分在意其材質是否無毒無味、綠色環保,近年來綜合性能優異、可回收及易降解的聚丙烯發泡材料已成為泡沫塑料家族中的“新寵”,日益受到熱捧,是聚合物泡沫材料中增長速度快的品種。超臨界CO2(二氧化碳)發泡聚合物技術是制備聚丙烯微孔發泡材料的關鍵核心技術。在第22屆工博會高校展區,華東理工大學化工學院教授趙玲領銜的“高性能輕量化聚合物材料的綠色高效制備”項目,聚焦的正是輕量化聚丙烯發泡材料的綠色制造和高端應用。該項目也是2019年度上海市科技進步獎一等獎項目。聚丙烯微孔發泡無水發泡制備聚合物珠粒實驗裝置(央廣網發 華東理工大學供圖)鎖定新材料發展重點領域,布局綠色制造新技術輕量化材料已是我國新材料發展重點領域,發泡則是實現聚合物輕量化的直接手段。隨著航天航空、國防、能源、交通、包裝、電器、運動器械等行業的快速發展,對具有優異機械性能和絕熱、隔音、絕緣、緩沖等特性的聚合物發泡材料需求越來越迫切。聚丙烯作為產量大、增長量快、應用領域廣泛的五大通用熱塑性樹脂之一,其高品質發泡材料的綠色制備一直是聚合物發泡領域的熱點與難點。016年,由華東理工大學牽頭申報的國家重點研發計劃“重點基礎材料技術提升與產業化”重點專項項目——“聚合物材料的輕量化技術”獲準立項,該項目所聚焦的正是運用綠色高效發泡工藝,開展聚合物輕量化的應用基礎—共性技術—產業化示范的“一條鏈式”研發工作。據趙玲介紹,聚合物發泡有物理發泡劑和化學發泡劑兩大類。化學發泡劑常常存在化學殘留、發泡過程難控制和不易獲得高發泡倍率等缺點;物理發泡劑中的氟氯烴類則對臭氧層有破壞作用,已逐漸被禁止和限制使用;一些新型氟碳氫化合物的全球變暖潛能值仍相對較高,烷烴類發泡劑則易燃燒不安全。相比傳統發泡劑影響氣候、火災危險、有害殘留以及VOC排放等問題和弊端,超臨界流體,特別是超臨界CO2,發泡聚合物是綠色制造技術,被工信部列入我國優先發展的產業關鍵共性技術,而且CO2進入聚合物后會引起熔點、表面張力和粘度下降、結晶行為改變等一系列變化,可以制備微孔甚至納米泡孔材料。聚丙烯是結晶聚合物,低溫固態發泡受結晶限制,很難制備高發泡倍率產品;高溫發泡聚合物熔體強度不夠無法保持完整泡孔,可操作窗口窄。因此,大規模制造具有穩定均勻泡孔形貌和外形尺寸的高發泡倍率微孔材料難度大。為了攻克這一難題,近年來華理趙玲團隊聯合無錫會通、中石化北化院、浙江新恒泰、鎮海煉化等單位,在合適物料體系、可控工藝過程和高效工業裝備等方面開展了超臨界CO2發泡聚丙烯的優化、強化和工程化等系列工作,形成了“適合超臨界CO2發泡的聚丙烯專用料”“分步/分段發泡新工藝”“優化構建流場結構實現高效規模制備”等三大技術創新優勢:根據在低于其流動溫度的可變形區發泡既可以突破結晶的制約又能保證發泡材料微孔結構和外形尺寸的穩定成型這一發泡機制,開發了兼具較寬發泡溫度窗口和較強的CO2溶解擴散能力的聚丙烯發泡專用料,以及能有效改善泡孔結構和表觀形態的新型功能助劑/添加劑;CO2變壓飽和提高了過程效率和發泡倍率,氣泡成核和生長的分段實施大幅減小了高壓設備體積;釜壓發泡、模壓發泡等高壓設備和聚合物預成型體的結構優化設計保證了均勻的壓力場、溫度場和速度場,成功實現了低密度聚丙烯微孔發泡材料的規模制造和柔性生產。

無錫TPEE材料廠家
簡述聚丙烯微孔發泡新材料(Microcellular Polypropylene foam), 簡稱MPP,是特指泡孔尺寸小于100微米的聚丙烯多孔發泡材料(更嚴格地定義是泡孔尺寸小于10微米,泡孔密度大于10的9次方個/cm3)。由于材料內部大量微米級泡孔的存在,MPP具有優異的減震、緩沖、隔熱和吸聲等性能,可廣泛應用于包裝、交通工具、箱包、體育器材等領域,是傳統EVA、PU、PS發泡材料、EPE和EPP的替代物。聚丙烯微孔發泡性能與應用應用超臨界二氧化碳技術(supercritical carbon dioxide) 制備MPP,在高溫高壓下將二氧化碳氣體導入聚丙烯材料基體,并誘導其成核、發泡,形成含有大量微米尺度泡孔的微孔發泡材料。發泡過程清潔無污染,發泡制品衛生環保。發泡過程PP材料未發生交聯,因此可回收循環使用。丙烯(PP)本身是無毒材料,是目前嬰兒奶瓶和可微波加熱餐盒的常用材料。清潔衛生的MPP特別適合于醫療器械、食品等包裝材料衛生等級要求較高的領域。也可應用于兒童拼圖、玩具等對產品健康要求較高的領域,代替常用的由AC發泡劑制造的交聯PE泡沫,EVA泡沫。PP是半結晶聚合物,其熔點一般150~170℃。相比于耐溫只有70~80℃的PE、PS、PU發泡材料,MPP的使用溫度可達120℃,因此MPP特別適合高溫包裝、高溫保溫等領域。MPP集增強、隔熱和降噪為一體,也特別適用于對材料輕量化要求較高的領域,如汽車、軌道交通,船舶,風機葉片等。輕質高強的MPP厚板作為結構泡沫使用,代替傳統的結構泡沫如PVC/PU互穿結構泡沫、PET結構泡沫等,特別是作為三明治夾芯復合材料的芯材使用。MPP微米尺度的泡孔賦予材料的特別之處有:(1) 同等發泡倍率(或表觀密度)下,由于泡孔較小,微孔發泡材料的機械性能損失較小。這意味著使用MPP可以更加節約材料,更加降低制品重量和體積。2) 由于泡孔尺寸在1-100μm之間可控,MPP可以被剖切成厚度小于0.1mm的超薄片材,而片材表面不會穿孔,可應用于微電子器件的包裝。(3) 由于表面大量微米級泡孔的存在,MPP適合作為液晶顯示器背光模組的反射板,提高漫反射率。(4) 微米尺度的泡孔有效降低了泡孔內氣體的對流,從而有效降低了由空氣對流引起的熱傳遞。因此高倍率的微孔發泡材料具有較低的、依賴于泡孔結構的長期穩定的低導熱系數。(5) 輕質高強的MPP片材適合于作為揚聲器振膜使用。(6) 同樣由于其微米尺度的泡孔,MPP具有極佳的表面保護性能,可應用于液晶面板等防護性要求較高的包裝領域。

無錫TPEE材料廠家
與傳統注塑制品相比,微孔發泡注塑制品具有質量更輕、翹曲和內部殘余應力更少、尺寸穩定性好、成型周期短等一系列優點。目前,欠注發泡成型是微孔注塑技術中應用為廣泛的工藝之一,具有操作簡單、效率高、能夠生產復雜制件,且能耗少,符合節約材料,降低成本這一發展理念,滿足發泡產品市場化的需求。然而,欠注發泡成型工藝也存在發泡制品內部泡孔易發生大量變形,泡孔尺寸分布不均勻,所得制品表面存在大量的氣痕、銀紋等缺陷,制約了其力學性能的提高和外觀視覺,阻礙了欠注發泡制品的進一步應用。家復合改性聚合物材料工程技術研究中心的何力團隊采用自主研發的氣體反壓裝置,利用化學欠注發泡工藝研究氣體反壓(GCP)對微孔注塑過程中發泡行為的影響。研究發現,采用氣體反壓可以減少發泡注塑制品的泡孔變形以及不均勻等缺點,改善了泡孔的形態。丙烯微孔發泡實驗方法將PP、發泡劑(AC)、發泡助劑[Zn(St)2/ZnO]按照98.5∶1∶0.5的比例混合均勻后加入料筒中進行塑化。然后打開氣體反壓裝置,在型腔中分別注入固定的GCP為0,0.2,0.4,0.6,0.8?MPa的氣體,隨后按照表1的工藝參數注射熔融樹脂進行發泡,冷卻后,取出PP發泡樣品。GCP對充模過程中熔體壓力的影響熔體注射完后,熔體壓力瞬間達到大值。隨著GCP從0增加至0.8?MPa,熔體內部大壓力從1.55?MPa增大到2.16?MPa,注射完成后,隨著氣體的排出,熔體壓力瞬間下降,隨著冷卻收縮,熔體壓力逐漸趨于0?MPa。由此可知,GCP可以明顯地提高熔體充模過程中的熔體壓力,改善欠注發泡過程中的熔體壓力環境。CP對泡孔質量的影響在沒有施加氣體反壓時,由于熔體流動速率遠大于泡孔的膨脹速率,泡孔發生流動剪切變形,導致末端位置的泡孔在皮層區域受到剪切作用時間和作用力較大,在流動方向上出現很大的變形,泡孔發生撕裂合并現象,泡孔形貌極不規則,而中間區域的泡孔形態受到剪切力較小,呈現規整圓形形態。同時發現,隨著GCP的增大,皮層附近撕裂變形的泡孔區域變小,熔體內部芯層泡孔從橢圓形向規整圓形形態轉變,規則泡孔區域所占比例增大,泡孔之間呈現獨立分布。當GCP達到0.8?MPa時,皮層附近泡孔呈現出相對較好的圓形形態,此時整體泡孔的變形較小。是因為GCP可以有效地降低泡孔在充模過程中受到的流動剪切作用,GCP值越大,泡孔在遷移過程中受到熔體壓力越大,泡孔受到熔體的約束力大,泡孔不易發生變形。GCP對結構參數的影響CP對泡孔結構參數的影響如下圖所示。可知,在常壓下泡孔的非變形層(也就是規則泡孔區)厚度僅占整個樣品厚度的10.9%;隨著GCP的增大,泡孔的非變形層所占比例逐漸升高,GCP為0.8 MPa時,升高至26.7%。而泡孔變形層區域厚度所占比例隨著GCP的增大而大幅度下降,從63.7%下降到45.4%,這說明GCP可以減小泡孔變形層,增大規則泡孔區域范圍。對變形層的泡孔變形度進行統計,如下圖所示,泡孔的平均長度隨著GCP的增加,整體呈現減小的趨勢,泡孔的平均寬度隨著GCP的增加而逐漸增大,泡孔的變形度隨GCP的增大而減小,由常壓下0.530的泡孔變形度降低到GCP為0.8?MPa下的0.304泡孔變形度,即GCP可以減小泡孔長度與寬度的差距,使變形區的泡孔變形程度減小。對不同GCP下泡孔非變形層的泡孔直徑進行統計,見圖c,隨著GCP的增加,當GCP為0.2?MPa時泡孔直徑略有減小,但隨著GCP的進一步增大,泡孔直徑從36.09?μm增大到41.93?μm。這是因為GCP的增大使得熔體的壓力也隨之增大,使得泡孔的成核臨界能壘升高,泡孔的成核速率下降,泡孔在充模過程中受到流動場的影響減弱,更多的氣體在卸壓階段促進泡孔的生長,因此熔體壓力越大,泡孔直徑越大。

無錫TPEE材料廠家
微發泡注塑,聚丙烯/橡膠/滑石粉復合材料,增強增韌聚丙烯微孔發泡聚丙烯作為一種經濟高效的熱塑性聚合物,具有材料成本低、抗腐蝕性好、比強度高和易于成型加工等優點,已廣泛應用于包裝工程、紡織、電子產品以及汽車工業。以汽車工業為例,聚丙烯的年均用量高達255.6百萬噸,研究表明汽車每減重10%就可以將燃料的利用率提高至少6%。因此,近年來為了節省材料和能源、減少環境污染進而實現經濟社會的健康可持續發展,塑料制品的輕量化問題引起了廣大學者的研究興趣,而其中發泡注塑成型工藝被視為是一種非常有前途的輕量化實現方式。然而,由于聚丙烯的熔體強度低,導致其發泡能力非常差,常規微發泡注塑聚丙烯產品存在泡孔尺寸大且分布極其不均勻,嚴重降低了其力學性能,尤其是沖擊力學性能。針對上述問題,山東大學材料科學與工程學院王桂龍和合作者提出了一種利用橡膠和滑石粉的耦合作用改性聚丙烯的新途徑,顯著提高了聚丙烯熔體強度和促進了結晶,進而改善了聚丙烯的發泡能力,終通過微發泡注塑制備了具有優異綜合力學性能的微孔聚丙烯制品。

無錫TPEE材料廠家
系統介紹車用聚丙烯的類型,應用方向,性能要求。車用PP隨著汽車工業的蓬勃發展,制造汽車的各種原材料也迅速發展和更新換代,越來越多的汽車零部件開始采用改性塑料替代金屬制件。塑料在汽車上的應用已有近50年的歷史,目前汽車用改性塑料的使用量已成為衡量汽車設計和制造水平高低的一個重要標志,塑料飾件的大量應用,促進了汽車的減重節能,提高了汽車的美觀舒適度。PP以密度小、性價比高、具有優異的耐熱性能、耐化學藥品腐蝕性、剛性、易于成型加工和回收利用等特性在汽車上得到了廣泛的應用。近來更是有把汽車內飾和外裝材料統一到PP系列材料的趨勢。由于高性能基礎樹脂的開發生產周期長、投資巨大、技術要求高,且需要高精尖的集成先進綜合技術,所以對現有PP樹脂需要進行更廣泛、更有效、更經濟、更實用的改性。聚丙烯微孔發泡延伸性、機械的強度和抗斷裂性無機填料和彈性體增韌增強改性PP主要是“三高”。是由 PP樹脂、三元乙丙橡膠(EPDM)和乙烯-辛烯共聚物(POE)等增韌彈性體及滑石粉、碳酸鈣等無機填料的復合物,其主要用于汽車保險杠的注射成型,且改性PP保險杠具有成本低、質輕、易涂裝、可循環使用等優點。滑石粉填充改性PP材料具有高剛性、低熱膨脹系數和低收縮率,且其抗化學腐蝕性能強,尤其是經表面處理的滑石粉填充PP可有效改善PP的沖擊性能,提高材料的模量和熱變形溫度。玻璃纖維增強改性PP玻璃纖維增強改性PP材料尤其是LGFPP材料在汽車部件上的研究與應用(如在前端模塊、儀表板骨架、車門模塊等典型部件的應用)是多年來的研究熱點之一。LGFPP制品指含有長度為10~25mm的玻璃纖維改性的PP復合材料經過注塑等工藝形成的三維結構。10~25mm的長玻璃纖維增強聚合物相比普通4~7mm的短玻璃纖維增強聚合物具有更高的強度、剛度、韌性,以及尺寸穩定性好、翹曲度低等優勢。此外,LGFPP材料比短玻璃纖維增強PP(GFPP)有著更好的抗蠕變性能,即使經受100℃的高溫也不會產生明顯的蠕變。與金屬材料和熱固性復合材料相比,LG-FPP的密度低,相同部件的質量可減輕20%~50%;LGFPP能為設計人員提供更大的設計靈活性,可成型形狀復雜的部件、提高集成汽車零部件的能力、節約模具成本(一般長玻璃纖維增強聚合物注塑模具的成本約為金屬沖壓模具成本的20%)、減少能耗(長玻璃纖維增強聚合物的生產能耗僅為鋼制品的60%~80%,鋁制品的35%~50%)、簡化裝配工序。汽車部件用礦物纖維增強PP的新產品,具有強度高、熱膨脹系數低、耐高溫、阻燃性能好、低浮纖、低翹曲、低收縮 等特點。發泡改性PPPP發泡材料是通過提高PP的熔體強度,從而提高發泡倍率而制成的低密度物質,其具有質輕、耐熱、耐高溫等優點。隨著汽車輕量化的發展,選用PP發泡材料已成為汽車減重的重要途徑,目前其在汽車內飾上的應用也越來越多,其中PP發泡材料在各種汽車上的使用占比為轎車占45%,卡車、工程機械車占20% ,客車、商務車占35%。汽車用PP發泡材料主要為化學微發泡材料,因為普通微發泡PP制品的表觀質量很不理想,僅適合于需要表面覆皮的高端車,不僅增加了制造成本,也限制了PP發泡材料的推廣和應用;而化學微孔發泡是以熱塑性材料為基體,化學發泡劑為氣源,通過自鎖工藝使得氣體形成超臨界狀態,注入模腔后氣體在擴散內壓的作用下,使制品中間分布著直徑從十幾到幾十微米的封閉微孔泡,且其理想的泡孔直徑應 <50μm ,但目前國內行業實際生產的微發泡PP的微泡孔直徑約為80~350μm 。對于微孔發泡主要有注塑微發泡、吹塑微發泡和擠出微發泡等,注塑微發泡適用于各種汽車內外飾件,如車身門板、尾門、風道等;擠出微發泡適用于密封條、頂棚等;吹塑微發泡適用于汽車風管等。利用微發泡技術可使PP制品的質量減少約10%~20% ,較傳統材料在部件上可實現50%的減重,注射壓力降低約30%~50% ,鎖模力降低約20% ,循環周期減少10%~15%,同時還能提高汽車的節能性,較傳統材料可實現30%的節能,并且能改善制品的翹曲變形性,使產品和模具的設計更靈活。在一些部件中,如汽車風管、風道,還可實現隔熱、降噪的效果,減少后道工序的成本。 密 度 為0.06g/cm3的輻射交聯PP高發泡片材具有良好的力學性能,作為汽車車頂,可降低汽車的質量,同時其還可用于汽車的內飾件,有利于汽車的輕量化。耐刮擦PP相對于工程塑料來說,PP、橡膠改性PP、熱塑性聚烯烴和熱塑性彈性體等聚烯烴材料具有可回收、質輕、成本低的優勢,因而被越來越多地應用于汽車以及其他領域,然而聚烯烴材料的耐刮擦性能明顯較差,而這一性能卻是儀表板、操控臺和門板表皮等汽車內部應用部件的關鍵性能,也是汽車外部應用部件、全地形車輛(ATVs)的重要性能之一,而且表面性能提高的聚烯烴能很好地代替金屬和工程塑料,同時還有利于涂色,因此積極尋找提高聚烯烴材料耐刮擦性能的解決方案十分重要。通過添加涂層、無機礦物和某些功能助劑可提高聚烯烴的耐刮擦性能,例如添加耐刮擦劑可制備耐刮擦汽車內飾用PP復合材料。汽車用改性PP的回收利用塑料作為一種環保材料,因其可塑性強、質輕、回收再利用率高等特性,在汽車工業中的應用非常廣泛,無論是內飾件、外飾件還是功能性結構件,都越來越多地用到了塑料。我國汽車保有量達到1.75億輛,對應用于汽車的塑料的粉碎再回收無疑變得越來越重要,且汽車塑料的回收將會形成一個巨大的市場,是一個前景廣闊的領域,學術界和企業在這方面都有很多的研究和實踐。