湖南PP物理發泡定制
發布時間:2024-05-31 01:04:28
湖南PP物理發泡定制
當前,作為制約人類生存和經濟發展的水資源受到更大程度的保護,水污染治理也得到了高度的重視。由于工業廢水中常含有多種有毒物質,對環境和人體有很大危害,因此要開發綜合利用,采取科學的凈化措施才可排放,化害為利。工業廢水中存在一定的有害污染物質。研究表明,造成水污染的污染物中,重金屬占據主導地位,一些重金屬對人體健康和生態環境構成了嚴重威脅。尤其是化工廢水中有些含有如氰、酚、砷、汞、鎘或鉛等有毒或劇毒的物質,以及無機酸、堿類等刺激性、腐蝕性的物質,在一定的濃度下對生物和微生物產生毒性影響。環境中的銅離子很容易通過食物鏈進入人體中,會引起頭痛、呼吸困難、引起血管內溶血、損傷神經系統,對人體健康造成嚴重的威脅。聚乙烯醇微孔發泡材料聚丙烯微孔發泡基于這些危害,發泡材料因特有的吸附過濾功能成為工業污水處理設備中的目標用材。在工業污水處理工程中,聚乙烯醇(PVA)是常用的高分子聚合物,其具有良好的水溶性、黏附性、機械性能和穩定性,廣泛應用于紡織、食品和醫藥等行業。近些年來,聚乙烯醇聚合物發泡材料多被用到工業污水和城市廢水處理的研究應用中。在有關公開的聚乙烯醇聚合物發泡材料用于污水處理的研究中,多以聚乙烯醇為原料,配以甲醛、淀粉、半纖維素、竹炭、聚丙烯酸、生物炭、海泡石、水滑石、坡縷石水等聚合物,再經發泡處理制備。不僅具有強吸水性,而且能夠通過吸附污漬實現凈化除污。可以有效處理工業廢水中的各種有害物質(生物毒性或致癌性),為社會倡導的高效、節能的處理水體污染措施找到了可行性方案。針對污水處理的實際需求,本文僅限于對幾種公開的聚乙烯醇聚合物發泡材料類型做有關介紹,如淀粉基、碳納米管改性的水凝膠、聚乙烯醇縮甲醛、聚乙烯醇縮甲醛殼聚糖、生物炭等材質的聚乙烯醇聚合物發泡材料。淀粉基聚乙烯醇聚合物發泡材料適用于污水處理 。該類發泡材料主要由包含半纖維素和海泡石的材料制備而成。利用半纖維素增強、增韌的作用,以及海泡石優異的親水性能和力學性能,將半纖維素和海泡石穿插于聚乙烯醇與淀粉形成的水凝膠材料中,再經發泡處理而成。具有比表面積大,結構穩固,過濾分離和吸附效率好,同時具有優異的親水性能和力學性能,能吸附廢水中的懸浮顆粒和污漬,并有脫除異味和脫色的效果,適用于污水處理技術。 用碳納米管改性的聚乙烯醇聚合物發泡材料可以對工業污水中的重金屬進行吸附。發明思路是鑒于碳納米管具有管狀結構和大的比表面積,其高吸附能力和很高的表面活性,使它成為獨特的多功能吸附劑。該版本的聚乙烯醇聚合物發泡材料,是利用腐殖酸和海泡石的增強作用,將腐殖酸和海泡石均勻的穿插于聚乙烯醇、甲基丙烯酸和聚乙二醇形成的三維網狀水凝膠材料中,形成對重金屬離子吸附效率好、吸附量大,而且結構穩固、力學性能優異的水凝膠發泡材料。試驗表明,凈化去污能力好,不僅可以處理城市生活廢水和畜禽養殖廢水,同時還可以處理工業廢水,如電鍍、紡織、印染、化工、制藥等工業排放的廢水,特別是不易生物處理的廢水,并且可以回收廢水中的貴金屬、稀有金屬等。此外本發泡材料還是殺菌藥物的優良載體,適用于需要殺菌的場合。聚乙烯醇縮甲醛海綿 傳統的污水處理材料很多不可降解,容易對周圍環境造成污染。天然高分子材料對生物無毒,傳質性能好,但強度低,厭氧條件下易被微生物分解,壽命短。合成高分子材料強度高,化學穩定性好,但傳質性能差。因此,將天然高分子材料秸稈纖維和合成高分子材料聚乙烯醇聚合物發泡材料——聚乙烯醇縮甲醛(PVFM)發泡材料用來處理污水,既能有良好的傳質性能。又能擁有強度高、化學穩定性好的優點。該實驗中采用機械打泡法和化學發泡法制備的聚乙烯醇縮甲醛發泡材料孔分布良好,孔徑重復率性,對廢水的 COD 和氨氮都有較高的去除能力,穩定后COD去除效果可達90%以上,氨氮去除效果可達96%以上。因此也可作為污水處理的潛在方案。圖源:河北科技大學 聚乙烯醇縮甲醛殼聚糖聚合物發泡材料的制備進一步豐富了工業廢水處理中的解決方案。聚乙烯醇縮甲醛發泡材料具有豐富的開孔結構,較好的力學強度和耐磨性,以及生物相容性。被用作清潔材料、過濾材料、吸收劑和功能性的吸附材料。殼聚糖是含多種整合機的天然生物聚合物,能通過整合作用或離子交換除去廢水中的金屬離子和燃料等有害物質。通過這兩種材料制備的聚乙烯醇縮甲醛殼聚糖聚合物發泡材料含有一定量的氨基,且孔徑較大,接觸面積較大,克服了傳統吸附劑及殼聚糖對重金屬離子吸附速率較慢的缺點。實驗表明,聚乙烯醇縮甲醛殼聚糖聚合物發泡材料吸附金屬離子后可以在幾分鐘內快速解吸附,經過5次循環之后,對 Pb2+ 和 Cu2+仍然表現出相對良好的吸附能力。可見是一種能用于污水處理的理想吸附劑。該方法操作方便,吸附后處理簡單,豐富了為工業廢水處理提供依據和方法。 我國大多數城鎮污水處理廠出水質標準不高,出水中仍含有較多的污染物質,進入水體后會造成水體富營養化,對環境造成一定的影響。填料的性能直接決定污染物去除率,傳統的填料或多或少存在著比表面積小、掛膜困難、生物量比較少且生物膜易脫落,處理效率不高等問題。生物炭聚乙烯醇縮甲醛聚合物發泡材料,可以作為污水處理填料應用,比表面積大,掛膜快,具有良好的親水性親生物性,表面生物量大且種類豐富,污泥量少不堵塞,與傳統填料相比有著巨大優勢,在污水處理廠提標改造及改擴建領域具有重大意義。生物炭聚乙烯醇縮甲醛聚合物發泡材料 圖源:浙江工業大學相較于傳統的技術,如將聚合物吸附填料直接共混于樹脂中,或者直接用吸附性物質制成復合吸附劑,研究新型的聚乙烯醇聚合物發泡材料成為污水處理綠色發展的重要方向。國內外的聚乙烯醇發泡技術發展均比較成熟,并且得到了一定規模應用,對解決工業污水處理、建設環保型社會做了應有之義。目前,針對聚乙烯醇聚合物發泡材料在工業污水處理中的應用,各大專業院校和研究所以及污水處理公司都有研究,制作材料技術、裝備和價格也具有普惠性和實用性,但仍需要在今后的實際工業污水處理中對材料的性能進行規模化驗證和優化。

湖南PP物理發泡定制
隨著新能源等行業的快速發展,發泡材料得到大規模應用,因其具有的優異機械性能和無毒(低毒)、絕熱、隔音、絕緣、緩沖、輕量化等性能,在新能源汽車領域的應用更是帶來了行業發展的新契機。隨著國民對于環保、綠色、安全、舒適要求愈加苛刻,對環境友好型的發泡技術和具備可阻燃、可(完全)降解、可導電等新型發泡材料受到追捧,成為國內外研究人員的研究熱點。聚丙烯微孔發泡由華東理工大學化工學院趙玲教授領銜的《高性能聚丙烯微孔發泡材料綠色制備過程的優化和強化》項目斬獲科技進步獎一等獎,發的聚丙烯發泡專用料打破了國外公司的壟斷,聚丙烯微孔發泡材料不斷地在新興領域成功應用,包括新能源汽車動力電池墊片等等,引領了高性能聚丙烯微孔發泡材料的綠色制造和高端應用。發泡材料具有什么優點發泡材料具有較好防震緩沖、隔音、隔熱保溫以及阻燃防爆等特性,其在汽車領域主要用于汽車車載空調用隔熱泡沫管材、汽車減震、新能源汽車電池用發泡硅膠密封墊圈等。目前大多數汽車內飾材料,如地板、頂棚、方向盤、汽車座椅等均為聚氨酯類泡沫材料,這種材料耐候性能較差,易燃且燃燒過程中釋放大量對人體有害的有毒氣體。隨著國內汽車產業節能減排發展趨勢愈加顯著,對汽車輕量化提出了更高要求。特別是在車市持續萎靡、新能源汽車競爭愈發激烈的情況下,輕量化成為汽車產業從困境中突圍的重要方向。整車廠、改性塑料企業都在加大輕量化材料領域的布局。發泡材料在新能源汽車領域的新應用新能源電動汽車的技術關鍵在于其高能量密度鋰電池的充放電技術及安全性能。鋰電池在使用過程中必須保持絕佳的防水防塵效果,而易發熱自燃是影響其安全使用的頭等難題。在暴雨、淺灘、霧霾等極端條件下,為滿足汽車行駛過程中動力電池的密封和緩沖保護的要求,特斯拉等美國車企率先將發泡硅膠這一小眾材料應用到動力電池上。例如:特斯拉model3電池PACK包為了減輕模組重量、提升安全性,大量使用有機硅發泡灌封材料來保護單個電芯,可在一定時間內有限阻止電池包上部熱量傳輸給電芯導致熱失控。由于特斯拉在動力電池組技術方便的標桿作用,大大加速硅膠發泡材料在動力電池PACK包上的應用推廣。聚丙烯微孔發泡材料技術在新能源汽車競爭愈發激烈的情況下,微孔發泡技術讓汽車駛向輕量化——在汽車非金屬部件的輕量化領域,微孔發泡材料是行業競相研究的主要課題之一。2018年,中石化就將聚丙烯微孔發泡材料應用技術開發列為重點課題。日常生活中,當人們購買兒童玩具、家具用品等塑料制品時,都會十分在意其材質是否無毒無味、綠色環保,近年來綜合性能優異、可回收的聚丙烯發泡材料已成為泡沫塑料家族中的“新寵”,日益受到熱捧,是聚合物泡沫材料中增長速度快的品種。聚丙烯作為產量大、增長量快、應用領域廣泛的五大通用熱塑性樹脂之一,其高品質發泡材料的綠色制備一直是聚合物發泡領域的熱點與難點。其中,超臨界CO2(二氧化碳)發泡聚合物技術是制備聚丙烯微孔發泡材料的關鍵核心技術。聚焦發泡材料綠色制造新技術2016年,由華東理工大學牽頭申報的國家重點研發計劃“重點基礎材料技術提升與產業化”重點專項項目——“聚合物材料的輕量化技術”獲準立項。該項目所聚焦的正是運用綠色高效發泡工藝,開展聚合物輕量化的應用基礎—共性技術—產業化示范的“一條鏈式”研發工作。據項目團隊專家介紹,聚合物發泡有物理發泡劑和化學發泡劑兩大類。化學發泡劑常常存在化學殘留、發泡過程難控制和不易獲得高發泡倍率等缺點;物理發泡劑中的氟氯烴類則對臭氧層有破壞作用,已逐漸被禁止和限制使用;一些新型氟碳氫化合物的全球變暖潛能值仍相對較高或價格昂貴,烷烴類發泡劑則易燃燒不安全。相比傳統發泡劑影響氣候、火災危險、有害殘留以及VOC排放等問題和弊端,超臨界流體,特別是超臨界CO2發泡聚合物是綠色制造技術,被工信部列入我國優先發展的產業關鍵共性技術,而且CO2進入聚合物后會引起熔點、表面張力和粘度下降、結晶行為改變等一系列變化,可以制備微孔甚至納米泡孔材料。聚丙烯是結晶聚合物,低溫固態發泡受結晶限制,很難制備高發泡倍率產品;高溫發泡聚合物熔體強度不夠無法保持完整泡孔,可操作窗口窄。因此,大規模制造具有穩定均勻泡孔形貌和外形尺寸的高發泡倍率微孔材料難度大。了攻克這一難題,近年來,團隊聯合無錫會通、中石化北化院、浙江新恒泰、鎮海煉化等單位,在合適物料體系、可控工藝過程和高效工業裝備等方面開展了超臨界CO2發泡聚丙烯的優化、強化和工程化等系列工作,形成了“適合超臨界CO2發泡的聚丙烯專用料“分步/分段發泡新工藝”“優化構建流場結構實現高效規模制備”等三大技術創新優勢:根據在低于其流動溫度的可變形區發泡既可以突破結晶的制約又能保證發泡材料微孔結構和外形尺寸的穩定成型這一發泡機制,開發了兼具較寬發泡溫度窗口和較強的CO2溶解擴散能力的聚丙烯發泡專用料,以及能有效改善泡孔結構和表觀形態的新型功能助劑/添加劑;CO2變壓飽和提高了過程效率和發泡倍率,氣泡成核和生長的分段實施大幅減小了高壓設備體積;釜壓發泡、模壓發泡等高壓設備和聚合物預成型體的結構優化設計保證了均勻的壓力場、溫度場和速度場,成功實現了低密度聚丙烯微孔發泡材料的規模制造和柔性生產。目成果利用上述創新技術,項目已成功建設了2套年產3萬立方模壓發泡裝置,實現了低密度聚丙烯微孔厚板的制造;新建了4套、優化改造了3套年產4-6萬立方的釜壓發泡裝置,生產效率提高25%,成品率提高到99%以上;發泡專用料已在鎮海煉化生產;2016-2018年新增產值3.31億,利稅1.09億。隨著應用市場快速開拓,2019年共推廣新建了13套裝置,市場占有率高和競爭力強。項目團隊獲得授權發明專利8件、實用新型專利8件;相關研究成果發表了46篇SCI/EI收錄論文,“國外同行認為我們全面系統地研究了CO2間歇發泡聚丙烯行為。”科技查新表明,模壓發泡的工程化技術達到國際領先水平,釜壓發泡的優化與強化技術具有國內外新穎性。

湖南PP物理發泡定制
新材料是現代科技發展之本,可降解塑料是新興的塑料新材料。隨著全球對改善環境的訴求越來越強烈,使用生物降解塑料被認為是根治一次性塑料“白色污染”最有效的解決方案。著眼于中國的雙碳戰略目標,生物基生物降解塑料全生命周期排放的溫室氣體總量較低。在此背景下,本報告深入研究可降解塑料行業現狀。從性能上看,PLA、PBAT、PHA等生物降解塑料性能接近普通塑料,為替代不可降解塑料創造了條件;從技術上看,PLA生產的中間原料丙交酯技術難以完全突破,限制產能釋放,而PBAT國內生產工藝不受限于國外,產能快速擴張;從應用上看,可降解塑料主要應用在餐飲、醫療和農業等領域。根據艾瑞測算,至2025年,外賣包裝、農膜和醫療領域將會釋放可降解塑料需求494.8億元、72.7億元和0.172億元。長遠來看,可降解塑料產業發展面臨不確定性:一,可降解塑料的成本高于傳統塑料,靠政策驅動的市場可持續性存在風險,產品的推廣最終取決于產業降本提效的空間;二,國內掌握生物降解塑料技術的企業不多,而且在關鍵環節與國外企業相比仍有較大差異,若后續技術無法突破,存在產能無法按時釋放的風險;三,多數可降解塑料的降解基于工業堆肥集中處理或特定的溫度、濕度、菌類等條件,而實際在使用后,能否有效地收集可降解塑料并滿足降解的環境條件還有待驗證。

湖南PP物理發泡定制
由于光降解材料的局限,以及廣泛的生物來源,目前的研究熱點更多地放在生物降解材料上,相對于光降解材料,生物降解材料的原料來源更加綠色,降解的產物對環境的污染性也更加小。生物可降解材料是一類在酶或微生物的作用下,使維持自身結構的分子鏈逐漸斷裂,形成對環境無害的小分子化合物的材料。 生物降解的方式有生物的物理、化學作用和酶的直接作用。根據來源的不同可以分為微生物降解型的生物材料、合成高分子型的生物降解材料、天然高分子型的生物降解材料。微生物降解材料是以有機物為碳源,微生物進行發酵轉化為高分子聚酯,利用這種高分子聚酯制作為塑料的材料。合成高分子型的生物降解材料是利用化學方法合成在自然界中與原本存在的利于降解的高分子化合物。天然高分子型的生物降解材料是在合成時以淀粉、纖維素、木質素等多糖化合物為原料,在必要的條件下加入生物降解添加劑或經氧化、改性而加工制成的塑料。其中,淀粉基構成的可降解材料和PLA構成的可降解材料是當今研究的熱點,PHB作為可降解材料也有較為廣泛的應用。 淀粉通過植物光合作用而形成的,易得,降解后仍以二氧化碳和水的形式回歸到生態環境中,是完全無污染的非常優良的生物降解材料。針對淀粉作為原料來源的淀粉基塑料是目前可降解材料領域研究的—大熱點。 PLA(聚乳酸)是多糖經過降解發酵制得、純化、聚合而成的環境友好型樹脂。PLA是由乳酸分子在一定條件下脫水縮合而成。PLA在土壤掩埋條件下,在溫度、氧氣、弱堿性的共同作用下,6~12個月降解為乳酸,最終經微生物代謝,形成二氧化碳和水。PLA因其優良的生物相容性和機械強度,被廣泛應用于新興功能型醫用高分子材料如醫用手術縫合線、骨科用固定材料等。 PHB(聚β-羥基丁酸酯)是細菌體內碳源和能源的以顆粒狀儲存的酯類積累物。PHB對氣體有阻擋性,能用于未添加抗氧化劑的食品的包裝袋;PHB有良好的生物相容性,可用于手術縫合線、骨折固定材料;因PHB能夠降解,可用于與農藥或貴重藥品的包埋處理。因為PHB用細菌發酵法進行生產,所以PHB的生產重點放在基因工程等技術。針對其易結晶、較脆、降解速度較慢的缺點,如何通過物理或化學的方法改善PHB的性能成為研究的重點對象。